1.1 I can demonstrate understanding of how to represent a region on a graph with an inequality.

1. Graph $y \le -2x + 7$

A.

B.

(C.)

D.

2. Which region is the feasible region of the system of inequalities given below?

$$y \ge x$$

$$y \le -\frac{1}{2}x + 5$$

 $\begin{cases} y \le 2x - 1 \\ x + y \ge -3 \end{cases}$ 3. Graph the system of inequalities

D.

4. Graph
$$2x - 7y > -14$$

D.

1.2 I can demonstrate understanding of real-world situations that can be modeled as linear equations or inequalities.

5. Sally wants to buy her friend a bouquet for his birthday. She wants it to contain both carnations and roses. She has \$28.00 to spend. Carnations cost \$1.43 each and roses cost \$2.36 each. Which graph below represents the possible combinations of numbers of carnations and roses Sally can afford to buy?

6. Jason is buying wings and hot dogs for a party. One package of wings costs \$7. Hot dogs cost \$4 per pound. He must spend at least \$40. Write an inequality to represent the cost of Jason's food for the party.

- c. 7x + 4y > 40d. 7x + 4y < 40
- 7. A grocer buys cases of almonds and walnuts. Almonds are packaged 20 bags per case and walnuts are packaged 25 bags per case. The grocer pays \$40 per case of almonds and \$25 per case of walnuts. The grocer orders no more than 300 bags of almonds and walnuts together and will pay no more than \$400.

The profit on each case of almonds is \$17 and the profit on each case of walnuts is \$15.

Which of the following are constraints for the situation above? Choose ALL that apply.

A.
$$20x + 25y \le 300$$
B. $x + y < 45$
C. $40x + 25y \le 400$
D. $17x + 15y = C$
E. $x \ge 0$
F. $y \ge 0$

1.3 I can represent real world situations as a linear programming problem and demonstrate an understanding of how to find reasonable solutions

- 8. Given the feasible region shown, what is the maximum value of the objective function: p(x) = 4x + 4y
 - A. 0
 - B. 60

D. 276

- 2.1 I can demonstrate understanding of the definition of a function and can determine when relations are functions given a graph, table or real-world situation.
- 9. Is this a function?

x	$ \cdot $
-1-	4
5-	-1
-6	3
-4	2
5-	-3
10	15
3	-4

10. Determine if the following graph is a function.

2.2 I understand the meaning of function notation and can evaluate functions for a given input.

f(x) = 6x + 3, find f(3).

11. Given the following function

12. Given the following function $f(x) = -x^2 + 2$, find f(-5).

- c. -27
- d. 23
- 13. Using the table below find f(x) = 2
 - a. 0
 - b. -4
 - (c. 3)
 - d. 4

Х	f(x)	
. 0	-4	
1	-2	
2	0	
3	2	
4	4	

Answer #14 and #15 using the graph f(x) and the table g(x) below.

X	g(x)		
-2	4		
0	0		
2	-4		
4	-8		

14. Determine if the statement is true or false.

$$\begin{array}{c} 12 > 14 \\ f(-2) > g(-2) \end{array}$$

15. The x-coordinate of the x-intercept of f(x) is less than the x-coordinate of the x-intercept of g(x).

2.3 I can demonstrate understanding of the significant features of a function represented by a graph, a table, or an equation and the relationship these features have to real-world situations.

16. Determine which of the following statements are false.

- b. The range is $y \ge -2$
- c. The x intercepts are (-2,0) (-1,0) (1,0) (2,0)
- d. The y-intercept is (0,4)

17. What is the domain and range of the function graphed below?

- a. Domain: x < 4, Range: $y \ge 4$
- b. Domain: All Reals, Range: y > 4
- c. Domain: All Reals, Range: All Reals
- d. Domain: x < 4, Range: All Reals

3.1 I can demonstrate understanding about exponential functions and compare situations and equations for exponential functions to those for linear functions.

- 18. The student enrollment E of a high school was 1240 in 1990 and increased by 15% per year until 1996. Which exponential growth model shows the school's student enrollment in terms of t, the number of years since 1990?
 - a) $E = 15(1240)^t$ b) $E = 1240(1.15)^t$ c) $E = 1240(15)^t$

1240L | +, 15)*

- d) $E = 0.15(1240)^t$
- **19.** What type of function is $f(x) = 6500(0.05)^{x}$?
 - a) Linear function
 - b) Quadratic function
 - c) Exponential Growth function
 - d) Exponential Decay function
 - 20. What type of function is shown in the table?

/	
(م	Linear function
a)	Linear function

- b) Quadratic function
- c) Exponential Growth function
- d) Exponential Decay function

	y =	
-12	-2	. (.)
-7	2	+ 14
-2	6	+4
3	10	14
8	14	14,

- 3.2 I can use tables and graphs to solve exponential equations including real world situations and translate between representations.
- 21. The number of bacteria in a sample doubles every day. The table shows the culture for days 0 through 4. If the sample has 64 bacteria on day 3, how many did it start with on day 0?

DAYS	0	1	2	3	4
# of bacteria	8	16	32	64	

a) 512

b) 192

c) 16

22. The graph on the right shows the projected population of Coleman, Texas from 1990 to 2080, which grows at a rate of 2% annually. Estimate the population in the year 2050.

- c) 24,000
- d) 29,000

- 3.3 I can evaluate exponential functions in the form $y = ab^x$ and relate the meaning to the context of a real-world situation.
- 23. You drink a beverage with 120 milligrams of caffeine. Each hour, h, the amount of caffeine, c, in your system decreases by 12%. How many milligrams of caffeine will you have in your system after 4 hours?

120(1-.12)4

24. Suppose you deposit \$2000 in an account that pays 6.5% annual interest. What is the balance after 3 years if the interest is compounded yearly?

Use the function
$$f(t) = 2000 (1 + .065)^t$$
.

- d) \$2.168.51
- 3.4 I can demonstrate understanding of the significant features of a graph of exponential function and their relationship to real world situations.
- 25. What is the asymptote of the equations $y = 4(.5)^{x-3} + 2$

a)
$$y = -3$$

b)
$$y = .5$$

c)
$$y=0$$

$$(d) y = 2$$